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Abstract-High-frequency representations for the response of an infinite plate to an impulsive line load are
extracted from a new form of the usual modal solution. A change ofvariables is used to facilitate an investigation
ofthe branches of the Rayleigh-Lamb frequency equation. Branch points ofthe branches are found about which
analytic continuations are made, which lead to the new form of the modal solution and which uncouple the
dilatational and equivoluminal motion. Singular wave fronts are investigated and certain terms in the final
solution. approximated with high-frequency series representations for the branches. are evaluated and com­
pared with known half space solutions. The method is applicable to certain anisotropic materials; however.
a homogeneous, isotropic plate is treated.

1. INTRODUcnON

THIS work is concerned with representations for the high-frequency response ofa suddenly
loaded infinite plate governed by the equations of motion from linear elasticity theory.
The problem has been given attention in the literature only recently. The method of
attack has almost exclusively exploited Cagniard's method, geometric ray theory and
wave front expansions, as the most recent of these, that by Rosenfeld and Miklowitz [1],
exhibits. On the other hand, in the present work high-frequency representations are ex­
tracted from the modal form of the solution, which is based on the underlying frequency
spectrum. The method is conveniently applicable to a broader class of problems than is
Cagniard's method, including wave propagation in anisotropic plates and possibly in
layered media and circular rods.

The method and representations are brought forth by treating the problem of an
infinite plate, subjected to an impulsive line load applied normal to one of the faces, which
are otherwise free. The plate material is isotropic and homogeneous.

The modal form of the exact solution is recounted in Section 2 and it consists of an
infinite sum of integrals, each of which represents a mode of propagation. The modes are
directly related to the branches, or roots, of the Rayleigh-Lamb frequency equation,
which gives a functional relationship between the frequency and wave number of straight­
crested waves propagating in the plate. The frequency spectrum, a plot of frequency
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versus wave number, is now quite well understood, chiefly through the recent efforts of
Mindlin et al. (see [2]). However, this knowledge is not sufficient for the present problem
in which an understanding of the relationship between the high-frequency portion of the
frequency spectrum and the high-frequency response of the plate is required.

The variables in the modal solution are changed in Section 3 as a necessary step to
solve this problem. In the new variables, an extension of Mindlin's investigation [2] of
the branches of the frequency equation is given in Section 4. The most important new
result, which relates to the high-frequency response, is the existence of analytic continua­
tions of the branches which are closely associated with the dilatational waves in the plate,
and which are crucial to this work. These are called the dilatational branches and they
are found with both the frequency and wave number pure imaginary. Branch points and
analytic continuations of the branches are investigated for use in high-frequency represen­
tations. Also, series representations, valid for high frequency, for the dilatational branches
and for the familiar branches of the frequency equation, called equivoluminal branches
here, are developed.

In Section 5 an equivalent modal solution is derived, which involves integrals over the
equivoluminal and dilatational branches. This modal solution uncouples the equivolu­
minal and dilatational motion which results from reflections at the free faces of the plate
and is the major complicating factor in these problems.

The equivalent modal solution is approximated, in Section 6, by using the series
representations for the branches. This being done, the summations over the mode numbers
are carried out and the expected geometry of the singular wave fronts is recognized in
Section 7. Example terms are evaluated in Section 8 for comparison with known half
space solutions.

2. mE MODAL SOLUTION FOR mE PLATE LINE LOAD PROBLEM

The plane strain equations of motion of linear elasticity for an isotropic homogeneous
rnaterial are

o2¢ o2¢ 1 o2¢
-+-=--ox; ax~ c; ot2

'

a2l/! a2l/! 1 02l/!
-+-=--ax; ax~ d ot2

'

(I)

where ¢(Xl' X3' t) is the scalar dilatational potential and l/!(Xl' X3' t) is the X2 component
of the vector equivoluminal potential. Xl' X2 and X3 are rectangular Cartesian coordinates
and the Xl and X 3 components of displacement are given by

o¢ ol/!
w=-+­

OX3 axl '

respectively. The dilatational and equivoluminal body wave velocities are

(2)

(3)
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where A. and Jl are the Lame constants and p is the density of the material. The ratio

a = CdC2 = [2(1-v)!(1-2v)]t

1033

(4)

is used as an elastic constant along with Poisson's ratio v, which is restricted to the range
o< v < t in this work.

Figure 1 shows the geometry of the plate line load problem and the equations of motion
are to be solved in the interior, - 00 < Xl < 00 and - H < X3 < H, of the plate. The solu­
tion is subject to the boundary conditions

where

0'33(Xl,H,t) = -1J(Xl)J+(t),

0'33(X 1, -H,t) = 0,

0'13(X 1, ±H,t) = 0

F1G. 1. Plate line load problem.

(5)

ow au (au ow)
0'33 = (A.+2Jl)~+A.~ and 0'13 = Jl ~+~

uX3 uXl UX3 uXl

are the pertinent stresses for this problem. J(Xl) is the Dirac delta function and J+(t) is
the one-sided delta function. The delta functions are localized at Xl = 0 and t = 0 and
defined so that

l~=-ooJ:o0'33(xl,H,t) dtdx l = -1,

with the constant 1 being the impulse per unit length along the line of loading. Also, the
plate is quiescent for t ~ 0 and the radiation condition requires that all dependent variables
vanish as Ix11 -+ 00.

This problem is easily solved, formally at least, by applying a Laplace transform on t
and a Fourier transform on Xl to the differential equations (1) and to the boundary and
initial conditions and then inverting the solution. This leaves a double integral representa­
tion which can be replaced with an infinite sum of single integrals (the modal solution)
by using residue calculus.

The modal solution for a symmetrical line load with respect to the midplane of the
plate was given by Lloyd and Miklowitz [3] and the asymmetrical line load solution is
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obtained similarly. Since the loading (5) can be decomposed into a symmetrical and an
asymmetrical loading, the derivation of the modal solution is not repeated here.

The facts that the equations of motion (1) are hyperbolic and that (5) is an impulsive
line load insures that U = W = 0 for t < [xi+(H-X3)2]t/Cl. For t ~ [xi+(H-X3)2]t/C1
the displacement components are given by the modal solution

1 00 foo ~
U(X 1 ,X3 ,t) = - L x sin(xx1)sin(wt) ~uF.(+) I dx

n~n=O 0 ~

oW IF(+)=O
"'="'"(,,)

+~ f foo x sin(xx 1) Sin(wt)a
U
(-) dx,

n~n=O 0 ~-)

oW F(_)=O
"'="'"(,,)

(6)

dx

where

lX = (w2/d-x2)t,

.,
F(+) = -P'"2[(w2/d-2x2)2cos(lXH)sin(pH)+4",2lXpsin(lXH)cos(PH)],

( +lX)

~_) = (P :lX)2[(W2/C~ _2",2)2 sin(lXH) cos(PH) + 4X2lXP cos(lXH) sin(pH)],

U(+) = (P :lX)2 [(w2/d - 2",2) COS(lXX3) sin(pH)- 2lXP sin(lXH) cos(px3)],

dx

(7)

(8)

(9)
U(_) = P 2 )2[(w2/d-2x2)sin(lXx3)cos(PH)-2lXPcos(lXH)sin(Px3)],

( +lX

w(+) = (p :lX)2[(w2/d - 2",2) sin(lXx3) sin(pH) + 2",2 sin(lXH) sin(px3)]'

w(_) = (P: lX)2 [(w2/d -2",2) COS(lXX3) cos(PH)+ 2",2 cos(lXH) COS(PX3)]'

The (+) and (-) subscripts identify terms with the response to the symmetrical and
asymmetrical loadings, respectively, in the decomposition of (5). The familiar Rayleigh-
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Lamb frequency equation is given by F( ±) = 0 and it admits an infinite set of real branches
for 0 < x < 00. Both the symmetrical and asymmetrical positive branches are denoted
by wn(x) and they are ordered so that wn(x) < Wn+ 1(X) for n = 0,1,2. " and 0 < x < 00.

These branches have been treated in detail by Mindlin [2]. The functions (9) are written
so that the first term in each results from the dilatational potential c/J and the second
term results from the equivoluminal potential t/J by (2).

The integration over x and the summation over n have been interchanged in deriving (6)
even though the loading (5) is expected to produce singular wave fronts. Either the inte­
grals or the sums must diverge to produce these singularities. Thus, if theorems requiring
uniform convergence are to be used to justify this interchange, either the loading must
be made smoother or the generalized functions in (5) must be replaced by defining sequences
with the limits to the generalized functions taken after these integrations and summations
are carried out. The latter is the most direct way to show that (6) is the response of the
plate to the loading (5).

3. THE MODAL SOLUTION IN NEW VARIABLES

Much of the high-frequency response of the plate, which must be contained in the
representation (6), is apparently inaccessible through direct integration and summation
even when approximations such as asymptotic expansions are employed. In order to
make the modal solution and the underlying frequency spectrum [made up of the branches
wn(x) for 0 ::;; x ::;; 00] more easily handled with tools such as analytic function theory,
the variables

" = H(P+rx) (10)

are introduced with X replacing the integration variable x in (6). This choice of variables
is similar to Holden's choice [4] of rx and Pto replace x and W for study of the branches
of the frequency equation. However, X and" allow a more direct approach to the high­
frequency response ofthe plate than either rx and Por x and w. Xand" are uniquely defined
by taking rx = Irxl when rx is real and P= IPI when Pis real and rx = - ilrxl and P= - ilPi
when they are pure imaginary.

The inverses of (10) are

rx = ,,(1- X)/2H, P= ,,(1 +X)/2H,

x = ,,[(x-:~D(:~~-X)J!/2H, (11)

with the signs of the radicals chosen so that x and ware nonnegative when they are real.
As a result of well-known properties of the branches, which are recounted in [5], (10)

gives a continuous one-to-one mapping of the real positive x-axis, which is the integration
path in (6), onto the complex x-plane for each of the branches wn(x~ n = 0,1,2, ....
Specifically, this mapping is the integration path C shown in Fig. 2 for the symmetrical
and asymmetrical branches wn(x), n = 1,2., 3, .... In this figure and in the subsequent
work, Re( ) and Im( ) are used to denote the real and imaginary parts, respectively,
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Im(x)

-I I Re (X)

FIG. 2. Integration path C.

(14)

of a complex quantity. The point X = (a-1)/(a+ 1) is the mapping of x = 0, X = 1 is the
mapping of points where wn(x)!x = CI and X = -1 is the mapping of x = + 00 where
wix)!x = C2' In fact, all branches in "the dilatational sector" of the x, w-plane, defined by

o~ x ~ wlcl' (12)

map onto (a-1)!(a+ 1) ~ X ~ 1 and all branches in "the equivoluminal sector", defined
by

wlc I ~ x ~ wlc2' (13)

map onto X= eilJ
, 0 ~ fJ ~ n. On the lowest symmetrical branch wo(x), 0 ~ x ~ W O(x)!c2

maps onto X = eilJ
, fJo ~ fJ ~ n, where

Xo =e ilJo = 1-2v2+2iv(1-v2)!

with fJo = cos- 1(1- 2v2) satisfying 0 < fJo < n12. Also, wo(x)/C2 ~ x ~ 00 maps onto
- 1 ~ X~ XR where XR satisfies - 1 < XR < 0 and the phase velocity wlx is equal to the
Rayleigh surface wave velocity at this point by (11). Similarly, on the lowest asymmetrical
branch wo(x), 0 ~ x ~ 00 maps onto 0 ~ X~ XR' Thus, integration paths in the x-plane
are specified for all branches.

Under this change of variables, the functions defined by (8) become

F(±) = 2~2m2G(x, v)[sin('1) ± R(X, v) sin(m)] (15)

where

)
(1 +X)3-8(1-v)(1 +VX)X (w2Ic~ _2X2)2 -4x2cxP

R(X v - - -,:----...,.~---.:-:;~,--.--'-::
, - X[(1+X)3-8(1-v)(v+X)X] - (w2Ic~-2x2)2+4x2IXP'

G(X, v) = (1+X)3-8(1-v)(v+X)X = 2H4[(w2/d-2x2)2+4x2IXP]/X'14.

(16a)

(16b)

In terms of x and w, X'14G(X, v)!2H4x4 is a function of the phase velocity whose only zero
for 0 ~ x ~ 00 is the Rayleigh surface wave velocity. By (10) this zero maps onto XR'
which is a simple pole of R(X, v). R(X, v) is the familiar reflection coefficient and R(eiIJ

, v) =
eiy(IJ.•) on X= e iIJ with y(fJ, v) given by (52) in the Appendix.

The Rayleigh-Lamb frequency equation then becomes

sin('1) ± R(X, v) sin(m) = 0 (17)

with the plus and minus signs corresponding to symmetrical and asymmetrical waves,
respectively, with respect to the midplane of the plate with these waves resulting from the
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symmetrical and asymmetrical decomposition of the loading (5). The branches of the fre­
quency equation are now taken as the functions "u) which satisfy (17) with ",,(x),
n = 0, 1,2 ... , denoting the mapping of the branches mn(x), n = 0, 1,2, ... , by (10).

Other expressions such as

dX/OF(±)1
dX om F(±)=O

are required in terms of Xand,,; however, they are not listed here.

The modal solution (6), in the variables Xand ", is

where

i (1- X2
) sin(xx.) sin(mt)U(±) I d

un(±) = trl X,
C x~x, v)[cos(,,) ± XR(X, v) cos(m)] ~=~ft(X)

_f. (1- X)2(1 + X) cos(xx1) sin(mt)w(±)

w
n

(±) - C XtGu, v)[(x- a-ll)(a~II-X)J[COS(") ± XR(X, v)cos(m)] dX·
a+ a ~=~ft(X)

(18)

(19)

The integration path C is shown in Fig. 2 for n = I, 2, 3 ... and it takes the forms just
described for the lowest symmetrical and asymmetrical branches n = O. x and mare
now functions of Xand" given by (11). The factors cos(,,)±XR(X, v)cos(m) in (19) result
from the derivative dx/dX, which is required for the change of variables, and they replace
the rather complicated functions

OF(±)I
om F(±)=O

in (6). The functions u(±) and w(±) become

u(+) = [X 2
- 2(1- 2v)X+ 1] cos[,,(I- X)x3/2H] sin[t"o + X)]

- (1 - X2
) sin[t,,(1- X)] cos[,,(1 + X)x3/2H] ,

u(_) = [X2
- 2(1- 2v)X+ 1] sin[,,(l- X)x3/2H] cos[t,,(l + X)]

-(1- X2
) cos[t,,(I- X)] sin[,,(1 + X)x3/2H] ,

w(+) = [X2-2(1-2v)X+ 1] sin[,,(I-x)x3/2H] sin [t"o + X)]

+(x-a-I)(a+l_ x) sin[t,,(l-x)]sin[,,(I+x)x3/2H],
a+l a-I

(20)
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This form of the modal solution actually offers no computational advantages over (6).
The frequency spectrum, now made up of the branches "ix), n = 0, 1,2 ... , is well under­
stood; however, the complexity of much of the high-frequency portion of the spectrum is
not at all conducive to integration over the branches. Hence, any advantage from (18)
must be obtained by manipulation of the integrals such as deforming the paths of inte­
gration, using analytic continuations, expanding functions, etc. It is by these methods
that the modal solution (18) is evaluated for the high-frequency response of the plate.

4. BRANCHES OF THE FREQUENCY EQUAnON

The form of the branches and certain of their properties are listed for use in evaluating
the modal solution (18) with emphasis on the high-frequency response. All of the branches
,,(X) which map into the sectors (12) and (13) by (11) have been studied by Mindlin [2]
and they are reconsidered here only to show their form in the X and " variables. The
branches are thoroughly investigated in [5].

Some simple results in [5] are sufficient to assure that a complete understanding
of the branches can be gained by studying the bran ::hes only on the half disk

Ixl ::;; 1, Im(x) ~ O. (21)

Attention is restricted to this half disk with emphasis on its boundary where the branches
are relatively simple and where the integration path C in (19) is found.

The additional restriction of Re(,,) ~ 0 is imposed without loss of generality since
- ,,(X) obviously satisfies the same frequency equation (17) as does ,,(x).

The real branches on - 1 ::;; X ::;; 1 are sketched in Fig. 3 along with a grid made up
of the hyperbolas" = pn/{l- X) and" = qn/{l +X) for p, q = 1,2,3, .... This grid was
also used by Mindlin [2] as an aid to sketching and bounding the branches. These branches
are easily sketched or calculated from various forms of the frequency equation (17).

~

317

217

17

-I XR
0 ~ X0+1

FIG. 3. Real branches on -I :s: X :s: I: solid lines, symmetrical branches; dashed lines, asymmetrical
branches.
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The real branches on (a-l)/(a+l)::; X::; 1 map into the sector (12) by (11) and those
on 0 < X ::; (a-l)/(a+ 1) map into the x, w-space with x pure imaginary and w real.
Both of these sets of branches have been studied by Mindlin [2]. As noted from Fig. 3, the
latter set of branches are multi-valued with vertical tangents. The branches on -1 ~ X < 0
are single-valued; however, they map into the x, w-space with both x and w pure imaginary.
These branches, which apparently have not been investigated before, are not important
to this work except to illuminate important branches on Ixi = 1 which continue onto these
through X = - 1.

Branches with" complex occur on -1 ::; X < (a-l)/(a+ 1), but not on (a-l)/(a+ 1) ~
X < 1, and these are investigated in [5]. However, they are not considered here except to
state that the lowest asymmetrical branch "o(X) is a complex branch occurring on XR ::; X ::; 0
as is a portion of the lowest symmetrical branch "o(X) on - 1 ::; X ::; XR'

It is shown very simply in [5] that, on X = ei6
, " must take one of the two forms

,,(ei6
) = 1,,1 e- i6

/
2

, (22a)

,,(ei6) = il,,1 e- i6/2 • (22b)

Branches of the form (22a) are called the equivoluminal branches and they are sketched
on X = ei6

, 0 ::; 0 ::; 1t, in Fig. 4 where they are shown as continuations of the real branches
on the Re(x)-axis through the point X = 1(0 = 0). These branches map into sector (13)
by (11). Similarly, branches of the form (22b), called the dilatational branches, are sketched
on the same interval in Fig. 5 where they are shown as continuations of the real branches
on the Re(x}-axis through X = -1 (0 = 1t); however, they map into the x, w-space with
both x and w pure imaginary. In addition, the hyperbolas" = q1t/(1 +X) and" = p1t/(I- X)
are also shown in these figures where they become the bounds 1,,1 = tq1t sec(O/2) and
1,,1 = tpn csc(O/2) for the equivoluminal and dilatational branches, respectively. The
point X-I = ei6

-. with 0_ 1 = cos-I(I-2v) is indicated in these figures, and it is the
mapping of the Lame point where w/x = .,j(2)c2'

8-.". 8
X--I

FIG. 4. Equivoluminal branches on X = e", 0 ~ 8 ~ 1[: solid lines, symmetrical branches; dashed lines,
asymmetrical branches.
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8-0 80 8- 1 1T12
X-I

8 8-1T
X--I

FIG. 5. Dilatational branches on X = e" . 0 :5 (J :5 It: solid lines, symmetrical branches; dashed lines,
asymmetrical branches.

Analyticity ofthe branches

Perhaps the most important property of the branches of the frequency equation is that
they are analytic functions of X except at certain singular points in the complex x-plane.
This makes available the Cauchy-Goursat theorem for integration in the x-plane over
the branches and the use of analytic continuations of the branches.

Analyticity of the branches is a result of the existence of the derivative d,,/dX. This
is considered in detail in [5].

The branches are not analytic at points where they are unbounded such as the singulari­
ties seen in Figs. 3-5. By examining the frequency equation under the condition that
" -+ 00, it can be shown that the four points X = 1,0, XR and -1 are the only points where
" can be unbounded on the half disk (21). All of the complex branches on the Re(x)-axis
are unbounded at XR.

The points where the derivative d,,/dX fails to exist but " is bounded are the most
numerous and interesting singularities. These can be shown to be square root branch
points, with the result that they are common to just two branches. By means of an investi­
gation, which is described in [5], these branch points are found in three sets on the half
disk (21) which are distinguished by their location and by the branches to which they
are common.

The first set of branch points occur on 0 ::;; X s (a -1 )/(a+ 1) and they are just the
vertical tangent points which are seen in Fig. 3. These include a branch point at X = 0
which is commonto the real asymmetrical branch"l on 0 ::;; X ::;; 1 and the pure imaginary
asymmetrical branch "0 on XR ::;; X ::;; O. An additional branch point, which can be included
in this set, occurs at X = Xo given by (14). It is common to the lowest symmetrical equi­
voluminal branch "0(e

i9
) = 1"01 e-

i9
/
2 and the lowest symmetrical dilatational branch

"0(e
i9

) = il"ol e-
i9

/
2 as seen in Figs. 4 and 5.

The other two sets of branch points are interior to and not on the boundary of the
half disk. The second set occurs approximately adjacent to the line segment (a -1 )/(a +1) ::;;
X < 1 with the branch points being common to neighboring pairs of real symmetrical
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or asymmetrical branches on (a-l)/(a+ 1) :s; X:s; 1. For example, the branch ,,"(X) shares
branch points from the second set with the branches ""-1(X) and ,,"+ I(X) but with no
others. An obvious result is that an analytic continuation can be made from one of these
branches onto either its upper or lower neighboring branch by taking a continuation path
which loops around a common branch point.

Similarly, the third set of branch points occurs adjacent to the line segment -1 < X< 0
with the branch points being common to pairs consisting of a real branch and a complex
branch with Im(,,) > 0 on -1 :s; X :s; O.

This knowledge of singularities of the branches is used extensively for analytic con­
tinuations of the branches which, in turn, are used to manipulate and rearrange integrals
over the branches.

Analytic continuations of the branches

Analytic continuations of the branches are developed to transfortn a usual modal
representation of the response of the plate into a form which readily yields high-frequency
information. The continuations which are useful for this purpose continue around branch
points from the second set described in the preceding. This set of branch points is shown
schematically in Fig. 6. The branch points are indicated by dots on vertical lines connecting
neighboring real branches on (a - 1)/(a +1) :s; X :s; 1 which share the branch points.
Also shown in Fig. 6 are some of the first set of branch points 0 :s; X:s; (a - 1)/(a + 1).
However, these are not involved in the proposed continuations.

The continuations of interest here begin on a branch at X= (a-l)/(a+ 1) and proceed
along the Re(x)-axis in the positive direction. Each of the branch points from the second
set which is common to the branch in question is circled as shown in Fig. 7.

"1 "1

"16

~~j~ "16

"15 "15

"14 ';-1-' "14

"13 '- 1_=- "13

"12

]----=-
/--

O!!=.!... I 0 0 -I I X
0+1 X 0+1

FIG. 6. Schematic representation of branch points: solid lines, symmetrical branches; dashed lines,
asymmetrical branches.

1m (X)

tlJl~IXI
FIG. 7. Path of continuation about branch points.
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Two basic types of analytic continuations result from this procedure. These are dis­
tinguished by the type of branch they ultimately lead to if the continuation proceeds
toward X = 1 and onto X = ei6

, 0 :::; () :::; n. This is illustrated by using Fig. 6 to describe
example continuations.

The first continuation begins on the symmetrical branch '16 at (a-l)j(a + 1) and
continues around every branch point from the second set encountered adjacent to the
Re(x)-axis between (a-l)j(a+ 1) and X = 1 and stair steps down successively on the
branches '15' '14 and finally on '13' which continues onto the symmetrical equivoluminal
branch '13(ei6

) = 1'131 e- i6
/
2 on X = ei6

, 0 :::; () < n. This is an example of an equivoluminal
continuation.

The other type of continuation is illustrated by beginning on the asymmetrical branch
'11 at (a-l)j(a+ 1) in Fig. 6 and continuing around every branch point from the second
set encountered adjacent to (a-l)/(a+ 1) :::; X < 1. This continuation stair steps up suc­
cessively on the branches '12' '13' '14' etc. An infinite number of branch points are en­
countered reflecting the fact that X = 1 is a limit point of the second set of branch points.
Ultimately, the continuation leads to the asymmetrical dilatational branch '11(ei6

) =
il'111 e- i6

/
2 on X = ei6

, 0 < () :::; n. This is verified by using an approximation to show that
this is the only branch available for this continuation to lead to. This is an example of a
dilatational continuation.

An infinite number of each of these types of continuations exists on the symmetrical
and asymmetrical branches.

Series representations for the branches

Detailed knowledge about the individual branches of the frequency equation is not
sufficient to allow even a good approximate evaluation of the modal solution (18). In
particular, the high-frequency response requires an accurate, integrable representation
for all of the branches for large values of the frequency w. From (11) this means that repre­
sentations of the branches '1(X) are required in a neighborhood of the points where '1 is
unbounded. The points X = -1 and X = 1 are especially important in this respect since
they are the only points where the phase velocity wjx approaches the equivoluminal and
dilatational body wave velocities with x and w unbounded. For this reason, series represen­
tations for the branches based on these two points are described.

The series representation

00

'1h) = E~O)(X)+ L EU1(X) exp[ - ij(l- X)~O)(X)]
j= 1

(23)

is for the symmetrical equivoluminal branches n = 0,1,2, .... The derivation of this series
is described in [5], and the coefficients E~O)(X) and the first three of EU)(X) are given by

E(O)( ) = 2nn-ilog[R(X, v)]
n X I+X'

£<1)( ) = i(R
2
-1)

X R(1 +X)'
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E(:2)(X) = i(R~-I) [!(R2+1)-(I- )R2 -1J
R2(1 +X) 2 X 1+X '

F 3) i(R2-1) [1 4 2 3 R2-13 2(R2-1)2]
(X) = R3(I+X) :3(R +R +1)-:2(I-X) I+X +:2(I-X) (I+X)2 '

log [R(x, v») is defined by requiring 10g[R(eil/, v») = iy(O, v) when X = eill
, 0 :s; 0 :s; 1t.

The series respresentation for the asymmetrical equivoluminal branches n = 1,2,3, ...
is obtained by simply replacing R = R(X, v) with - R in (23). This is equivalent to replacing
~O)(x) with E~~t(X) and EW(X) with (-I).iE(i)(X).

Similarly, as is shown in [5J, the series representations for the dilatational branches
can be obtained from (23). As a result,

00

11",(x) = D~)(X)+ L D(k)(X) exp[ik(1 + X)D~~X)J
k= 1

(24)

is for the symmetrical dilatational branches m = 0, 1, 2 . " where D~)(x) = - F:)(- llx,
-IIR)/X with 10g(-I/R) = -log(R)+i1t and D(k)(X) = -Fk)(-l/x, -I/R)Jx, For these
coefficients, E~)(x, R) == E~)(X) is written as an explicit function of R, and likewise for
pk)(x).

Likewise, the series representation for the asymmetrical dilatational branches
m = 1,2,3, ... is obtained by replacing D~)(X) with D~~t(X) and Dlk)(X) with (-I)kD(k)(X)
in (24).

The results of an investigation on the convergence of these series, which is much too
lengthy to include here, are listed. Only certain regions of interest in the x-plane were
examined to determine whether or not they are interior to the region of convergence
rather than to try to determine the exact form of the region of convergence for each series.

With the exception of the lowest symmetrical equivoluminal and dilatational branches,
the series representations for all of the branches converge uniformly with respect to
X = eill on any closed segment interior to 0 < 0 < 1t with the point 0 = 1t included for the
equivoluminal branches and 0 = 0 included for the dilatational branches. The series for
the lowest symmetrical equivoluminal branch, n = 0 in (23~ converges uniformly with
respect to X = eiIJ on any closed segment interior to 00 < e:s; 1t with eo defined by (14).
Likewise, the series for the lowest symmetrical dilatational branch, m = 0 in (24), converges
uniformly with respect to X= e iB on any closed segment interior to 0 :s; 0 < eo' It is
recalled that these two branches share a branch point at Xo = eiIJo,

In addition to Ixl = 1, there is another path in the x-plane on which IR(X, v)1 = 1 and
it is not an overwhelming task to investigate the convergence of these series. On the half
disk (21) such a path connects the points (a-l)/(a+ 1) and X-1 defined following (22b).
The path actually remains interior to the quarter disk Re(X) > 0, lm(x) ~ 0 and Ixi :s; 1.
The fact that IR(x, v)1 = Ion this path simplifies the calculations much as it does on X = eiIJ,
o :s; 0 :s; 1t; however, the most important motivation for considering convergence here
is that integration paths in the modal solution are conveniently deformed onto this path.
None of the series representations for the branches converge on all of this path, however,
as the branch number n or m increases the series representations converge uniformly
with respect to X on a larger and larger closed segment of this path which includes the end
point X-1 and approaches the end point (a-l)/(a+l). This result is precisely that which
is required for applications to the high-frequency response of the plate since the upper
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(26)

branches, as nand m become unbounded, are necessary to represent the possibly dis­
continuous wave fronts.

S. THE MODAL SOLUTION ON THE EQUIVOLUMINAL AND DILATATIONAL
BRANCHES

The modal solution (18), excepting the lowest symmetrical and asymmetrical modes
n = 0, is shown to be equivalent to a more convenient form consisting of sums of integrals
over the equivoluminal and dilatational branches.

Existence of the integrals over the contemplated paths of integration requires writing
the parts of the integrals (19) resulting from the dilatational potentiale/> by (2) in the form

lm[f. F.(X, '1, X3) sin(c.ot) eiXX1 I dX] (25)
C ~=~"(x)

and the parts resulting from the equivoluminal potential'" in the form

[f. [
Sin(XXl)] . I ]1m F",(x, '1, X3) eKllr dx .

C COS(XXl) ~=~"(x)

The bracketed term indicates that either sin(xxl) or COS(XXl) occur in the integrands as
in (19). These forms are constructed for use only on the right half of the plate, Xl ~ O.

From these, the equivalent form of either the symmetrical or asymmetrical part of the
modal solution (18) is

co {f. . [Sin(XXl)] . I }L 1m [F.(x, '1, X3) sin(c.ot) e'XXl +F.,,(x, '1, X3) e,mr
] dx

n=l CE COS(XXl) ~=~(x)
(27)

co {f. . [Sin(XXl)] ., }+ L 1m [F.(x, '1, X3) sin(c.ot) e'XXl +FI/1(x, '1, X3) e,m'] dx·
m=O,l CD cos(xxd ~=~m(X)

The justification of the equivalence of (27) and the modal solution (18) is not trivial and
that will be discussed shortly. In the first sum of integrals, '1n(x), n = 1,2,3, ... , are the
symmetrical or asymmetrical equivoluminal branches and their analytic continuations.
In the second sum of integrals, '1m(X) are the symmetrical dilatational branches
m = 0, 1,2, and their analytic continuations or the asymmetrical dilatational branches
m = 1,2, 3, and their analytic continuations with the sum from m = 0 for the sym-
metrical part and from m = 1 for the asymmetrical part.

The integration path CE , shown in Fig. 8, goes from the point (a-1)/(a+ 1) to X-I
on the curve on which IR(x, v)1 = 1, which was just discussed This is done so that all of
the branch points in the second set which are common to the equivoluminal branch in
question are to the right of this portion of CE and those belonging to the third set are to
the left. If this is not possible due to the location of some of these branch points, small
indentions are made so as to leave these branch points on the proper side of the path.
The remainder of CE is on Ixi = 1 as shown. Similarly, the integration path CD' also shown
in Fig. 8, goes from (a-1)/(a+ 1) to X-Ion the same path with the same comments holding
for the branch points common to the dilatational branch in question. From X-1> CD
continues toward X = 1 on Ixi = 1 with a small indention about X = 1 included because



Modal representations for the high-frequency response of elastic plates

Im(x'

1045

-I

FIG. 8. Integration paths CB and CD'

I Re(x'

the integrals in (27) fail to exist for certain values of XI' X3 and t as (J --+ 0 on X = ei8
,

o~ (J ~ n. This indention passes above all of the branch points from the second set and,
yet, approaches X = 1 tangent to the Re(x)-axis. This is possible since this infinite set of
branch points is bounded by a curve which is also tangent to the Re(x)-axis at X = 1.

The equivalence ofthe forms (18) and (27) of the modal solution is not shown rigorously
since it involves rearranging infinite series which do not converge at the singular wave
fronts. However, (27) is shown to involve precisely the same integrals over the same
branches as does (18).

For each equivoluminal branch '7"(X), the integration path CE is deformed so that it
goes from (a-l)j(a+l) to X = 1 on the Re(x)-axis with indentions, as shown in Fig. 7,
for the branch points of '7"(X) from the second set. The deformed path then goes from
X = 1 to X = -Ion X = ei8

, 0 ~ (J ~ n. Likewise, for each dilatational branch '7m(x),
the path CD is deformed onto (a-1)j(a+ 1) ~ X ~ 1 with indentions for the branch points
of '7m(X) from the second set. The Cauchy-Goursat theorem insures that these deforma­
tions do not change the values of the integrals.

The representation (27) is then equivalent to sums of integrals over all equivoluminal
and dilatational continuations ofthe branches '7"(X), n = 1,2,3, ... , with the equivoluminal
continuations extending from (a-l)j(a+l) to X = 1 and then to X = -Ion X = ei8

,

o~ (J ~ n, and the dilatational continuations extending from (a-1)j(a+ 1) to X = 1.
Hence, (27), with CE and CD deformed, certainly involves integrals over exactly the same
equivoluminal branches on X = ei8

, 0 ~ (J ~ n, as does (18). Referring to Fig. 6 and to the
description of the equivoluminal and dilatational continuations from (a-l)j(a+ 1) to
X = 1, it is seen that (27), with CE and CD deformed, covers every portion of every real
branch '7"(X), n = 1,2,3, ... , on (a-l)j(a+ 1) ~ X ~ 1. Thus, the same branches have been
covered by this integration as in (18).

Only the integrals on the indentions about the branch points remain. Every branch
point belonging to the second set is easily seen, from Fig. 6, to be involved just twice in
these integrals-once on an equivoluminal continuation and once on a dilatational con­
tinuation of the branches. It is then a simple matter to show that the two branch line integrals
about a particular branch point mutually cancel.

As a result, (27) is equivalent to (18) by deformation of integration paths and rearrange­
ment of the series. The sum of the symmetrical and asymmetrical parts of the modal solu­
tion, each in the form of (27), plus the lowest symmetrical and asymmetrical modes n = 0
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from (18) or (6) is taken as the response of the plate to the loading (5) and justification
of this form as a solution of the equations of motion, the boundary conditions and the
initial conditions requires the same demonstration of convergence as does the original
modal solution (6).

This rearrangement to form a new modal solution has the very important effect of
uncoupling the equivoluminal and dilatational motion.

6. HIGH-FREQUENCY APPROXIMATION OF mE MODAL SOLUTION

The modal solution (27) is approximated by using the series representations for the
branches. The solution then involves a sum of integrals whose integrands possess none
of the branch points of the branches which were of concern previously. As a result, the
integration paths CE and CD are deformed so that the summations over the branch numbers
nand m can be carried out leaving the solution

(28)

The integrals Ide, lee, ldd and led are given by (49a), ... , (49d) and (50) in the Appendix.
The detailed derivation of (28) is contained in [5], and an unresolved difficulty concerning
singularities arising from zeros of R(X, v) is also discussed there. These integrals are written
with their subscripts indicating their origin with, for example, Ide being the integral resulting
from the dilatational potential 4J with the integration over the equivoluminal branches.

The two lowest modes, resulting from the lowest symmetrical and asymmetrical
branches n = 0, are not included in (28). In addition to this, the expression is approximate
since the series representations for the branches do not converge on the entire integration
paths CE and CD' However, this is expected to be a very good high-frequency approxi­
mation since it is recalled that the regions of convergence include the entire paths CE

and CD as a limit when the branch numbers nand m approach infinity.
A similar high-frequency approximation for the displacement component w(x1, X3, t)

can be written by making simple changes in (49a), ... , (49d) and (50) as indicated by (18).

7. mE WAVE FRONTS

For further calculations, the various functions (54) replace X or () as the independent
variable in the preceding integrals so that (dX/d<l» d<l> replaces dX with <I> representing
one of these four functions. The condition for a singular wave front is the simultaneous
satisfaction of

(29)<I> = 2m, d<l> = 0
dX

for any integer m such that <I> = 2m occurs in the range of integration. The first equation
gives the singular points of the generalized functions csc[(1t/2)C1»], cot[(1t/2)C1»] and <5(<1> - 2m)
and the second equation makes dX/d<l>, which is now a part of the integrand, singular.
Under this condition, the Cauchy principal value integrals and the last sum of integrals
in (50) fail to exist causing singularities which are identified as wave fronts.
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For I = 1,3,5, 7, dcJ)/dX = 0 is not possible for the range of variables considered
here and, hence, only the terms in the integrals containing the functions (54) identified
by I = 2, 4, 6, 8 contain wave fronts.

Parametric equations for the singular wave fronts are given by (29) for each of the
functions in (54). These wave fronts are sketched in Fig. 9 with their origin indicated by
the quantities Q~J = (2p+2q+ 1=F1)H/C2t and Q~~ = (2p+2q+1±1)H/C2t where the
upper signs apply for I = 2,4 and the lower signs for I = 6, 8. The equivoluminal fronts,
described by cJ) = 'Pl~q in (29), are indicated by Q~J and they are contained in lee' Likewise,
the dilatational fronts, described by cJ) = cJ)1~q in (29), are indicated by Q~J and they are
contained in ltId. The figure is at time t = 6·3H/C2 for v = 0·3 so that the circular equi­
voluminal wave Q~ = 0 has crossed the plate c2t/2H = 3·15 times at Xl = 0 while the
circular dilatational wave Q~~ = 0 has crossed the plate c l t/2H ~ 5·89 times. The top
sketch in Fig. 9 just shows the thickness - H s; X3 S; H successively repeated so that all
wave fronts appear as smooth curves. The geometry is the same as for a layered half space
with refractions but no reflections at the junctions. The bottom sketch shows the super­
position of these wave fronts as they appear in the plate and this is obtained by folding
the top sketch as an accordian at each horizontal line to form a single plate thickness.

The familiar head wave is also shown in Fig. 9. This wave front is singular for the stresses
but not for the displacements for the loading (5) and it is contained in lee in the principal
value integrals of (49b) and (50) as well as in the integrals of (50) containing the delta

J(3- H +----+-----+-----~t__
~ ~~

FIG. 9. Wave fronts at t = 6·3H/cz for v = {)O3: solid lines, dilatational fronts; dashed lines, equivoluminal
fronts.
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functions. This front results entirely from the point X = 1 or 0 = 0 where the integrand
vanishes as will be seen in some of the following calculations.

The finite number of parameters Q~ and Q~ required to represent all ofthe wave fronts
in Fig. 9 means that only a finite number of coefficients Apq and A~ are needed if only the
terms in (49b), (49c) and (50) which contain singular wave fronts are of interest. Specifically,
Apq for p+q ~ 5 and A~ for p+q ~ 3 are needed for the equivoluminal and dilatational
fronts, respectively. This, in turn, means that only a finite number of the coefficients
&)(X) and D(k)(x) are needed for this purpose.

There are wave fronts, other than those shown in Fig. 9, which are predicted by (29);
however, these can be shown to cancel when the integral sums lde+ldd and lee+ led in (28)
are examined carefully. Thus, if only the wave fronts are of interest in the response, the only
function of the terms Ide and led in (28) is to cancel extraneous wave fronts.

8. SPECIFIC TERMS CONTAINING WAVE FRONTS

Certain parts of the solution (28) are evaluated or approximated to compare with known
exact solutions of the Lamb's problem of a line load on a half space and to illustrate how
the principal value integrals are to be evaluated.

The last sum of integrals in (50) are the only ones that can be easily evaluated in an
algebraic form, which is done by taking advantage of the properties of the delta functions
(j('PIVo - 2m). It was found that only the terms I = 2,4 in this sum may contain singular
wave fronts and only I = 2 contains an unreflected portion of the circular equivoluminal
wave front Q~ = 0 shown in Fig. 9. This term is treated for a comparison with the half
space solution. From (51), S12 +( -ltS22 = 1+(-It and the portion of (28) containing
this I = 2 term is

clI 00 I" sin(Oj2) sin(O) 1
U(X 1 ,X3,t) ~ 2 H (2_1)t L IG(;9 )1 cos[(2m+!)y](j('P-4m)dO

1tJl.a m=-aoo e,v
(30)

where

'I' = 'P~e60 = H(a2 -1):cos(O/2) {c2t -X{1-a
2

a: 1 COS
2
(O/2)T} -1 +X3/H. (31)

The inverse of'll = '1'(0) is

(32)

with s = 1,2 denoting the two possible branches. A critical point with dOJd'P unbounded
occurs at

(33)

where
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This point is in the range 0 ::5: fJ ::5: 7t only if dt/Cl ::5: Xl ::5: C2t and it is associated with this
portion of the wave front Q~~ = 0 in Fig. 9.

With

dO. = -2 csc(fJ')~[cos(fJ')J
d'¥ 2 d'¥ 2'

where

1 Xl(H'¥+H-X)[2C~t2-Xi-(H'¥+H-X)2]}

- (- r [(H'¥ +H - X)2 +xi]2[(H'¥ +H - X)2 +xi - dt2]+ '

(30) becomes

-clI co {f'P(O) sin(fJ) [( 1) JI
U(Xl,X),t) ~ H (2_1)+ L IG( ill )lcOS 2m+-2 y

7t Jl. a m= -co 'Pc e , v II=II,('P)

x t5('¥ -4m)d~[cos( fJl )J d'¥

fco sin(O) [( 1) JI d [ (fJ2)J }- 'Pc IG(eill, v)lcOS 2m+"2 y 1I=1I2('P/('¥-4m)d'¥ cos 2" d'¥

-ciI ~ sin(O) [(2 1) JI d [ (fJl(4m»)J= 2 + L... ill cos m+- y - cos --
7tHJ1.(a -1) m=1ftc IG(e , v)1 2 II =1I,(4m) d'¥ 2

~ sin(fJ) [(2m 1) JI d [ (02(4m»)JL... 'II cos +- Y - cos --
m=1ftc IG(e l

, v)1 2 1I=1I2(4m) d'¥ 2

(34)

(35)

(36)

(37)

results from (311 me is defined as the minimum integer such that 4me ~ 'lie and rna is the
maximum integer such that 4mo ::5: '1'(0).

If Xl and X) are further restricted to the region C~t/Cl ::5: [dt2-(H _X)2]+ ::5: Xl ::5: C2t
and - H ::5: X) ::5: H, then me = 0 and the value m = me = 0 is easily identified with the
unreftected portion of the circular equivoluminal wave front. Retaining only the m = 0
term from (35) leaves

-clI {sin(fJ) (Y)/ d [ (Ol(O»)J
u(x l , X), t) ~ 7tHJl.(a2 -1)+ lG(eill, v)1 cos "2 1I=lItlO) d'¥ cos -2-

sin(O) (Y)I d [ (02(OY)J}- cos- -cos--
lG(eill, v)1 2 11=112(0) d'¥ 2
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(39)

and, from (32) and (34~ this can be written as

( )
'" F{Xl' X3, t, [xi +(H -X3)2 - c~t2]t} + F{x l , X3' t, - [xi +(H - X3)2 - dt2]t}

UXI,X3,t = [2+(H )2 2t2]tXl -X3 -C2
(38)

The function F exhibits explicit dependence on the radical [xi+(H-x3)2-c~t2]t and it
is analytic with respect to this radical and nonzero in a neighborhood of and including
the point where the radical vanishes.

With some algebra and using the fact that cos(y/2)/IG(ei8
, v)1 = Re[ei9/G(ei9

, v)], it can
be shown that the first part of (38), containing F with the positive radical, is one half of
the exact solution in this region for the Lamb's problem of a half space with the loading
on X3 = H given by (5). This solution is found in a convenient form in the work of Gaken­
heimer and Miklowitz [6] for a traveling load on a half space by letting the load velocity
approach infinity. Furthermore, (38) gives all of the odd powers, -1,1,3,5, ... ,
of [xi +(H - X3)2 - c~t2]t in a wave front expansion as the circular equivoluminal wave
front is approached from the region dt/Cl ::s; [dt2-(H-X3)2]t::s; Xl ::s; C2t. The even
powers, 0, 2, 4, ... , are not contained in (38), but these terms, and any of their derivatives,
are not singular at the wave front and they are probably contained in other parts of the
representation (28).

One half of the head wave response is also contained in the first term of (38), which
can be extended to XI ~ c2 t, and it stems from the term sin[91(0)]. This term can be shown
from (32) to behave like [CIt - Xl _(a2 -1)1-(H -x3]t near the unreflected portion of the
head wave. The remainder of the unreflected head wave response is contained in the
second integrals in (50) and in the first integrals in (49b) and in both cases it is associated
with 'P~60 = 0 occurring at X = 1(0 = 0).

Even order reflections of the circular equivoluminal wave front are contained in (35)
with m = 0 containing the unreflected portion, as just treated, m = 1 containing the second
reflection, etc. The odd reflections are contained in terms derived in the same manner
from the last sum of integrals in (50) for I = 4.

The singular response following this portion of the circular equivoluminal wave front,
this being the "two-sided" equivoluminal wave front, is contained in the principal value
integrals in (50) for I = 2, 4. The remainder of this wave front on 0 ::s; Xl ::s; C~ t/Cl' which
is "one-sided", is contained in the first sum of integrals in (49b) for I = 2,4 and p = q = O.

As an example of a principal value integral and for another comparison with the known
half space solution, the term ldd in (49c), which contains the circular dilatational wave
front Q~ = 0 in Fig. 9, is considered. Q~ = 0 only for I = 6,8 and p = q = 0 and the
term I = 8 contains the unreflected portion of this wave front. From (51),

S18 csc(~~) +S28 cot(~~) = -cot(i~)
and, using A~o = 1, the portion of (28) containing this I = 8 term is

)
- cl l P V 51 (1 +xHl- 2(1- 2v)X+ 1]

u(x l' X3' t ~ 2 t·· -=-----=-='-='----.t--=-:'-,---.;...:..;....------=:
32nHJ1.(a -1) (a-l)!(a+l) X G(x, v)

x exp ( -~~IOgR) cot(~~) dX
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Modal representations for the high-frequency response of elastic plates 1051

(40)

The inverse of <f) = 4l(X) is most conveniently found by first solving for (1- X)/Xt and then
for X with two possible branches Xl(<f)) and X2(<f)), expected. A critical point, where dx/d<f)
is unbounded, occurs with (a-1)/(a+ 1) ~ X ~ 1 if 0 ~ Xl ~ clt and it is

(41)

where

This critical point is associated with the circular dilatational wave front Q~ = 0 in Fig. 9.
With <f) as the integration variable, (39) becomes

U(Xl, X3, t) ~ P. v. f f(x) cot (i<f)) dX
(a-l)!(a+l) (43)

[
c dX (1t) fGlc dX (1t)= P.v. f(Xl)d~cot"4<f) d<f)-P.V. f(x2)d~cot 4"<f) d<f)

Gl[(a - l)!(a + 1)) - 00

with f(x) =f(Xl ,X3,t,X) determined from (39) and <f)[(a-1)/(a+1)J = 1-X3/H-clt/H
from (40).

The last integral in (43) and all principal value integrals in (49a), ... , (49d) and (50)
which involve an infinite set of singularities should be interpreted as

(44)

where Me is the integer for which 4Me-2 ~ <f)e ~ 4Me +2. Integration by parts was used
to reduce the last integral in (44) to an ordinary integral.

The singularity identified as the unreflected portion of the circular dilatational wave
front is now contained entirely in the first integral of (43) and in the first integral of (44).
This wave front is identified with the singularity ofcot[(1t/4)C1l] at <f) = 2m = 0 with Me = O.
Just these two integrals are taken as the approximate response and they are approximated
further by evaluating all of the nonsingular parts of the integrands at <f) = <f)e where
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Xl = X2 to give

U(XI ,X3,t) ~ P.v. f~: !(XI) :~ cot (i(J») d(J)-P.V. f~: !(X2)~~cot(i~ d(J)

~ IXI (cr t2 - xDt[x
2

- 2(1 ~ 2~~X2+ 1] exp( - -!4>c log R)! (45)
41tJLCI(a - t G(X, v) X=XI($c)

$c cot( i(J») d(J)

x P.v. L2 [(H(J)-H +X3)2+ xi -dt2]t·

The lower limit of integration (J)[(a -1)/(a + 1)] from (43) has been replaced by - 2, but
that is of little consequence since only the singular parts of the integrals are of interest here
and they stem from the upper limit (J)c' The radical in the denominator of the integrand
results from the derivatives dX l/d(J) and dX2/d(J) and it vanishes at (J) = (J)c creating an
integrable singularity. However, if (J)c = 0 this singularity coincides with the singularity
(J) = 0 of cot[(1t/4)CI>] and the principal value integral fails to exist. This singular value of
the integral is identified with the singular wave front.

The representation (45) is approximated further to get the first term of a wave front
expansion by taking cot[(1t/4)(J)] ~ 4/~ and assuming that l(J)cl « 1 to get

'" IXI(H-X3)[l-2(1-2V)X+l]1 -t
U(X I ,X3,t) = /(2) 2( 2-1)t!G() (t-td) (46)

" 1tJ,lCI a d X, v x= xIlO)
where

td = [xi +(H- X3)2]t/CI , (47)

so that t = td makes (J)c = 0, and

(48)

from (42~ (46) agrees exactly with the first term in the wave front expansion obtained from
the solution of Lamb's problem of a half space with the loading (5) on X 3 = H. Again
this solution is contained in the work of Gakenheimer and Miklowitz [6]. This expression
is valid for all of the unreflected portion of the wave front Q~ = 0 in Fig. 9 and this includes
the entire front 0 ~ Xl ~ Cit if Cit ~ 2H.

Analogous to the equivoluminal wave, the second, fourth, sixth, etc., reflections of this
dilatational front are also contained in (39) and they are associated with singularities
at (J) = - 4, - 8, -12, etc. As a result, exp( --!4> log R) = R2

, R4
, R6

, etc., at these points
causing the only major change in the wave front expansion (46). This is consistent with
the fact that R = R(x, v) is the reflection coefficient. The odd order reflections are contained
in an integral similar to (39) which results from (49c) with p = q = 0 and I = 6. Likewise,
the first, third, etc., reflections are associated with singularities at (J)~60 = - 2, - 6, etc.,
which produce exp(-~~6o log R) = R, R3

, etc., in wave front expansions.
The representation (28), while still quite complex, only involves explicit functions of X

and it offers direct access to the high-frequency response including the wave fronts. This is
contrasted with the modal solution (18) or (6) in which details of the high-frequency
response are all but invisible. In addition, this representation appears to be considerably
more accurate than wave front expansions which diverge rapidly away from the fronts.



Modal representations for the high-frequency response of elastic plates

REFERENCFS

1053

[I] R. L. ROSIlNPI!LD and J. MIKLOWITZ, Wave Fronts in Elastic Rods and Plates, Proc. 4th U.S. nom. Congr.
appl. Mech., pp. 293-303 (1962).

[2] R. D. MINDLIN, Waves and Vibrations in Isotropic, Elastic Plates, Structural Mechanics, Proc. 1st Symp.
on Naval Struct. Mem., pp. 199-232. Pergamon Press (1960).

[3] J. R. LLOYD and J. MIKLOWITZ, On the Use ofDouble Integral Transforms in the Study of Dispersive Elastic
Wave Propagation, Proc. 4th U.S. nom. Congr. appl. Mech., pp. 255--267 (1962).

[4] A. N. HOLDEN, Longitudinal modes of elastic waves in isotropic cylinders and slabs. Bell Syst. tech. J. 30,
956--969 (1951).

[5] P. W. RANDLES, Modal Representations for the High-Frequency Response of Elastic Plates, Ph.D. Thesis,
California Institute of Technology (1969).

[6] D.·C. GAKENHEIMEIl and J. MIKLOWITz, Transient excitation of an elastic half space by a point load traveling
on the surface. J. appl. Mech. 36, 505--515 (1969).

APPENDIX

The integrals in (28) are (P. V. denotes Cauchy principal values)

I = ~ ~ P V. II A Iv ~ )(1- X)[X
2

- 2(1- 2v)X+ 1] (!~(e) I R)
de L. L. .. pqv.., 'VI t exp 'Vlpq og

p,q=OI=1 (0-1)/(0+1) 2X G(X, V) 2

X [81/cot(i~~) +(-1)P82Icsc(i~I~)J dX

+4Im{ ~ ~ I" A (ei9 ~)sin(O/2)[co~O)-1+2v] [.r(~(e) +1)J
L. L. 1"1' I 1G(.9 )1 exp '2 11"1

p,q=O 1= 1 0 e ,V

X [81/+( -1)P82I exp( -ii~l~) J 1~x~:,;/~) dO},
_ ~ 8 II (1- X)(1- X2) (1 (e) )

lee - - L. L P.v. Apix,'I',) 2 tG( ) exp 2-'P,pq logR
p,q=OI=1 (0-1)/10+1) X X,V

x[ 81/cot(i'Pl~q) +(-1)P82I csc(i 'P~~)J dX

+4Re{ ~ t f." Apq(eiB
, 'P1)Si~~2!,Si~(O) eXP[i!2('PI~+1)J

p,q=OI=1 0 e ,V

X [81/+(-1)p821 exp( -ii'PI~) J 1~x~;:;r~) dO},
I = ~ ~ pv.I1

A' Iv ~)(1+X)[X2_2(1-2v)X+1] (_!~(d) I R)
lid L. L. .. pq\b 'VI I exp 'Vlpq og

p,q=OI=1 (0-1)/(0+1) 2XG(X,v) 2

X [81/ csc(i~l~)+( -1)P821 cot(i~~) J dX,

_ _ 00 8 II , (1 +X)(1- X2) (1 (d) )
led - L L P. V. Apq(x, 'P,) 2 tG(x ) exp --2'1',1"1 log R

p,q=OI=1 (0-1)/(11+1) X ,V

X [81/ csc(i'PI~) +(-1)p821 cot(i'PI~) J dX·

(49a)

(49b)

(49c)

(49d)
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The integrals on X = ei8
, 0 ::5; 0 ::5; 1t, in (49b) for lee must be modified fotthe terms p = q = 0

and 1= 1-4 since 'Pl~o is real. Using Aoo = 1, this sum of integrals is replaced with

4 ~ {_!s f"Sin(O/2~Sin(O) [I('P(e) 1)J dO-!P f"Sin(O/2Jsin(O)
i~;\ 2 1/ 0 lG(e iIJ, v)1 cos 2 100+ 2 .v. 0 lG(e iIJ, v)1

00 r sin(O/2) sin(O) [( 1) J (e) }
+ m!:oo [S1/+(-1rS21] Jo IG(ei8,v)1 cos m+"2 y 15('P100 -2m)dO .

Terms occurring in these integrals are

(
-1 1 -1 1 1 -1 1 -1) ,

(SkI) = -1 1 1 -1 -1 1 1 -1

_ -1 [[3-4V-COS(O)] Sin(O)J
y(O,v)-2tan [1-2v-coS(O)]2

with 0 ::5; y(O, v) ::5; 1t for 0 ::5; 0 ::5; 1t,

±t(1- X) +x3(1 +X)/2H,

'Pl~ = 2['P, -1-(1-X)p-2q]/(1 +X),

~~ = 2[<1>, + 1+ (1 + X)p + 2q]/(1- X),

'Pl~ = 2['P,+1+(1+X)p+2q]/(1-X)·

(50)

(51)

(52)

(53)

(54)
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In (53) the upper sign applies for I = 1-4, the lower sign applies for I = 5-8 and X3 is
replaced with -x3 for 1= 3,4,7,8. The coefficients Apq(X,~) for 0 ::;; p+q ::;; 3 are

Aoo = 1,

A10 = i(~-1 +X)E(1),

A01 = -(1 +XR 2)/(1 +X),

A20 = -t[~2-2~1-X)+1-3X+X2](E(1»)2+i(~-1+X)E(2),

All = -i[~(1 +XR2)/(1 +X)-(3-2X)(1 +XR2)/(1 +X)+ XR2]E(1),

A02 = (1 +XR2)2/(1 +X)2,

+1-3X+ X2]E(1)E(2) + i(~ -1 +X)E(3),

A21 = t[~2(1 +XR2)/(1 +X) - 2~3 - 2X)(1 +XR2)/(1 +X)+2~XR2

+(9 -14X +4X2)(1 +XR2)/(1 +X) - 5X(1- X)R2] (E(1»)2

- i[~(1 +XR2)/(1 +X) - (3 - 2X)(1 +XR2)/(1 +X) +XR2]E;<2),

A 12 = i[~1 +XR2)2/(1 +X)2 +(3X - 5)(1 +XR2)2/(1 +X)2 +2XR2(1 +XR2)/(1 +X)]E(1),

A03 = -(1+XR2)3/(1+X)3.

The coefficients ~(X,~) are ~btainedby replacing Xand ~ with - Xand -~, respectively,
and replacing E with - DUl while R = R(X, v) remains unchanged in Apq(x, ~).

(Received 14 July 1970; revised 5 October 1970)

Afic:TpaJc:r~pe~eJ]J(ercJl HOBaJI 4JoPMa 06WKHoBCHHoro MO,IJ,aJIhHOrO peWCHHJI BwpallCeHHl BhICOlCOA

'IllCT0TW: .lUllI DOBe~eHHJI 6ecJcoHe1fHoA IIJIllCTIIHJCM DO~ BJIHJIHHeM HMIIYJIIoCHBHoA JIllHeAHoA Harpy:JJCH.
HCIIOJlh3YefCJI H3MeHeHHe lIepeMeHIIWX .lUllI 06JIeI"leHHJI HCClle~OBllHHJl BerBeA ypaBHeHHJI 'IllCTOTW:

P:meJl-JIllM6a. HaxO~TCJI TO'IJCII BerBeA, BOICpyr 1C000pWX ~eJIalOTCJI aHaJIHTH'ICClCHe npo~OJIlll:eHHJI,

'ITO DPBBO~mOBOA 4JoPMe MO,ll;am.HOro peweHHJI H pa3,l1;eJIJler npo,ll;om.Hoe H paBHoo6J.eMHoe ,lI;BHlIl:eHHe.
HCClle,D;yIOTCJI $poHTW oco6wx BOJIH, H onpe~eJlJIIOTCJI HelCOTOpwe 'lJIeHhI B OCTaT01fHOM pemeHHH,

IIPX6JIHl1l:eHHWe BIlq)8.XeHHJIMH BWCOII:oA '1llCTOTW B PJl,AllX. CpaBHHBllIOTCJl3TH Pe3YJlhTaTW: C II3BeC1'HWMH

pemeHHJIMH.lUllI DOJJYllPOCTPllHCT. Mero~MOllCHO npHMellJlTh II: HelCOTOplIIM aHH30Tp0DHhIM MarepHaJIaM,
HO B ,lI;aHHOM CJIY'laC, paCCMarpHBllefCJI O~Hopo~HaJl,X30TPODHaJI DJIllCTHHKa.


